A DESIGN PROGRAM FOR THE ESTIMATION AND ABATEMENT OF SOIL LOSSES FROM HIGHWAY SLOPES

by

David J. Poche Highway Research Analyst

Virginia Highway Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Highways and the University of Virginia)

Charlottesville, Virginia

May 1974 VHRC 73-R51

PREFACE

Acting upon a request by the Environmental Quality Division of the Virginia Department of Highways, the Research Council conducted an overview evaluation of the Department's erosion and siltation control program. Much of the evaluation deals with the maintenance of the environment during highway construction. A most important consideration appears to be the accurate prediction of soil loss from highway slopes during construction and the design of the siltation controls to abate this loss on the construction site.

To this end, this design manual was prepared in an attempt to estimate the soil loss and to design a set of adequate abatement structures along the ditch line of the roadway. These tasks are accomplished by a computer program which is intended to be used on the IBM Model 370 computer of the Central Office of the Virginia Highway Department.

The manual is intended to be used by the personnel of the Location and Design Division and Environmental Quality Division as part of the initial phases of planning and design and by environmental personnel at the district level for updating of control structures as construction progresses or maintenance of the structures is required.

The manual consists of a general introduction to the problem and this is followed by a brief description of the information which must be input into the computer as well as a description of the calculated results. A simple example is used to show typical input and output. Greater detail on various aspects of the computer program are given in the Appendices. These include a description of the general mathematical procedure used in the calculation of the soil-loss prediction, description and arrangement of input cards and a complete listing of the computer program.

The manual is open-ended in that as future research into the design of siltation controls is accomplished by the Research Council, the computer program will be up-dated.

A DESIGN PROGRAM FOR THE ESTIMATION AND ABATEMENT OF SOIL LOSSES FROM HIGHWAY SLOPES

by

David J. Poche Highway Research Analyst

INTRODUCTION

This manual describes an easy to use computerized design program which estimates the soil loss from a highway slope or median strip. Input into the program consists of a basic description of the slope (location, soil erodibility, slope length and gradient) and duration of construction. The output consists of an estimated annual soil loss and a peak loss assuming a 10-year storm event over the construction period. The preventive measures required to control this peak soil loss from getting into streams are in terms of the number of straw barriers needed per 100 feet of roadway. An equivalency table is also output for alternate siltation controls and procedures in terms of straw barriers.

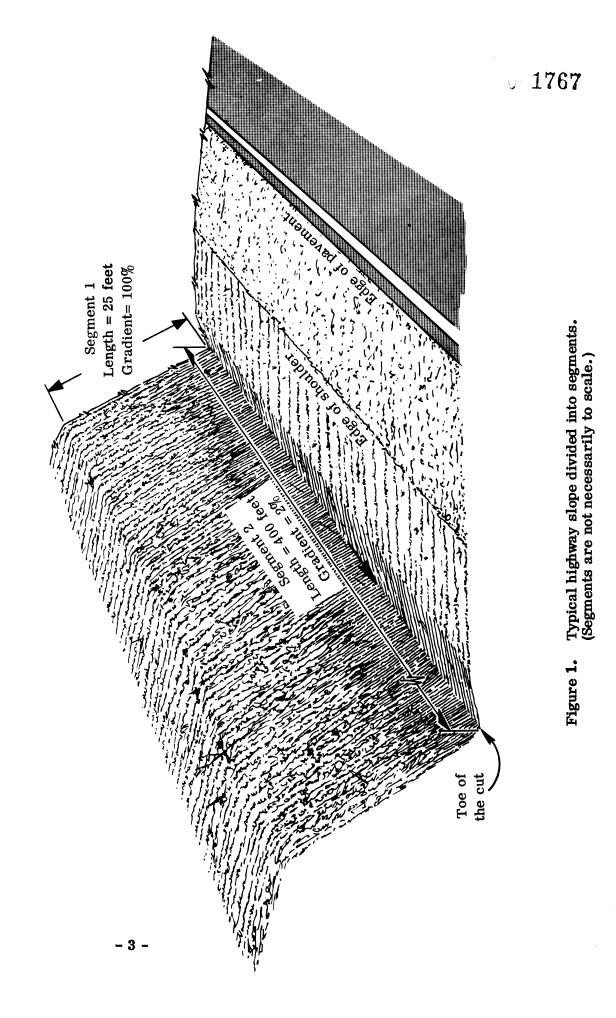
Several studies suggest that soil loss from highway construction can be estimated by use of the Universal Soil Loss Equation. (1, 2, 3, 4, 5) This soil loss prediction equation was developed by the U. S. Soil Conservation Service for soil losses from agricultural areas of low and uniform steepness. Two difficulties arise in its application to highway construction. These are that the typical highway slope is commonly irregularly shaped in cross section and that at least part of the slope is usually very steep. Recently, a modification of the equation by Foster and Wischmeier allows for the prediction of soil loss from irregular slopes. (6)

The program described here is intended to be used for new construction and scheduled erosion control maintenance of existing projects. It is designed for the IBM Model 370 of the Central Office of the Virginia Department of Highways so that during the initial phases of planning, personnel of the Location and Design Division and Environmental Quality Division will have access to its use. Environmental personnel at the district level can also use their remote computer terminals to maintain and redesign siltation controls as the construction proceeds. A brief description of the method of calculation is found in Appendix A.

INPUT PROCEDURE

Three basic input items are used to determine the soil loss from a highway slope using the Universal Soil Loss Equation. These are:

1. The location of the slope in terms of district and residency,


- 2. a description of the topographic cross section and soils of the slope, and
- 3. the period of construction or any selected time interval in which the soil of the slope will be disturbed.

Coded values of the district and residency are used to determine the annual regional rainfall distribution and the rainfall-energy index (see Appendix A) for the particular location of the highway construction. These values are used in the computational procedure along with the project period of construction and soil erodibility factor (see Appendix A) to produce the estimated annual soil loss as well as the soil loss occurring over selected time intervals.

The technique for describing an irregular slope such as found along a roadway undergoing construction is to divide the slope cross section into a series of straight line segments. Each segment may have a different slope length and percent gradient. The simplest number of segments would be two (as is shown in the nearly completed slope in Figure 1). The percent gradient of each segment is found from:

Percent gradient of a segment = $\frac{\text{Vertical change in feet}}{\text{Horizontal change in feet}} \times 100$

In Figure 1, the first slope segment would be a cut slope from which most of the soil loss would be generated and the second segment would be the drainage ditch running parallel to the roadway. This latter segment also contributes to the overall soil loss and is the location where most of the siltation abatement measures are used. The designed abatement structures are to be placed in the last segment. The program allows calculation of the soil loss for complex slopes with five segments.

u 1768

OUTPUT

The basic unit of abatement utilized in this program is the two-bale straw barrier. The computer program generates the number of straw barriers which should be placed in the last segment to control the soil loss from a 10-year storm event occurring during the period of construction.

In the future, investigation by the Research Council will assess the effect of other erosion control structures and practices (rock barriers, seeding and mulching, etc.) in terms of equivalent numbers of straw barriers. For instance, control of the soil loss from a particular roadside slope may require one straw barrier every 200 feet but seeding and mulching of the same slope may reduce this to one barrier every 400 feet due to the resulting soil stabilization. As new field data are gathered, the computer program will be updated with the latest information. A small equivalence table is provided near the end of the computer output.

Given the slope shown in Figure 1, the results of the program are given in Figure 2. Columns 1-7 are intermediate calculations (see Appendix B) and should be used for checking output. The length of the segments, in this case 25 and 400 feet, respectively, are shown in column 8 of the output along with their total (425 feet). Column 9 shows that the effective length-slope (LS) factor of the slope (Appendix A) was 2.84 and column 10 shows the percent of the total sediment loss contributed by each segment of the slope.

The estimated annual soil loss from the example was 129.5 tons per acre and over the construction period (October to December) the soil loss for a simulated 10-year storm event would be 24.6 cubic yards.

The estimated number of straw barriers per 100 feet of roadway is 1.41 and the total number of barriers needed in the final section is 6.0.

The soil trapping equivalency table (Figure 2) indicates the straw barrier equivalents of certain structures or procedures. Thus if a section required a total of 17 barriers and a double-ring drop inlet were contained in the section, then only 7 barriers would be needed as abatement, since a drop inlet is equivalent to 10 straw barriers in trapping silt capacity.

The cover index C can be used to modify the designed abatement. The C index is multiplied by the abatement index to determine the number of bales needed. For example, suppose the slope shown in Figure 1 had been mulched less than 90 days. Then the abatement after mulching (see Figure 2) would be .50 times 6 barriers or 3 barriers. After 90 days of grass growth essentially no barriers would be required.

- 4 -

				PERCENT CONTRIBUTION OF TOTAL LOSS	9	0													L	111	1769	
				PERCENT CO OF TOTA	84.719 15.281	100.000																
				SEGMENT LS	40.86 0.46	2.84								1.41 6.				C VALUE	1.00	•50	• 05	
43	163.			SEGMENT LENGTH	25. 400.	425.								OF ROADWAY SMENT		STHAW BARRIERS						
RESIDENCY	R VALUE 1	6	12	U2-U1	1021. 184.	1206.	129.47	112.64	24.60	18.81	0.23	0.09		BARRIER(S) NEEDED PER 100 FEET OF HOADWAY OF BARRIERS NEEDED IN FINAL SEGMENT	BLE	= 10 STHAW	J			(YS)	UAYS)	
RES				In	 			11	= 00	и	11	н	ABATEMENT	EDED PE EDED I	NCY TA	BALED)	CUVER INDEX			[90 DAYS)	06	
7	0.28	BEGINNING MONTH	ENDING MONTH	UZ	1021. 187.				CTION PERIC				ABAI	RIER(S) NEE BARRIERS NE	EUUIVALENCY TABLE	DUBLE-RING	CUVÉR			HING (FIRSI	HING (AFTEF	
DISTHICT	K VALUE	T		LENGTH-1	0. 25.		рен Аске	YARDS	OVER CONSTRUC					NO. OF STRAW BARI TUTAL NUMBER OF I		1 DROP INLET(DOUBLE-RING BALED)= 10		YPE OF COVER	1.1	SEEDING AND MULCHING (FIRST	SEEDING AND MULCHING (AFTER	
				GRAUIENT PERCENT	100.00 2.00		ESTIMATED ANNUAL SOLL-LOSS IN TONS PER ACRE	ESTIMATED ANNUAL SUIL-LOSS IN CUBIC YARDS	ESTIMATED SUIL-LOSS IN CUBIC YARDS OVER CONSTRUCTION PERIOD	IN CUBIC METERS	ESTIMATED AREA OF INTEREST IN ACRES	IN HECTARES		N0.		I		ТҮРЕ	NONE	SEEL	SEEL	
				LENGTH	25. 425.		- 1105 INNIA	ANNUAL SUIL-	NI SSOIINS	NI	AREA OF INTE	IN										
				SEGMENT	- 2		FSTIMATED	ESTIMATED	ESTIMATED		ESTIMATED											

DESIGNING MAINTENANCE OF TEMPOHARY SILTATION CONTROLS

Figure 2. Computed soil-loss and abatement for slope shown in Figure 1.

- 5 -

ACKNOWLEDGEMENTS

The author thanks Mrs. Sarah Kelley of the Data Section, who did the computer programming. Special thanks also go to W. R. Smith and M. E. Natto, who provided field information for this study.

The project was conducted under the general direction of Jack H. Dillard, Head, Virginia Highway Research Council, and under the specific direction of Mehmet C. Anday, head of the Soils, Geology and Physical Environment Section.

REFERENCES

- 1. National Cooperative Highway Research Program, "Erosion Control on Highway Construction", Synthesis No. 18, p. 52, 1973.
- 2. Wischmeier, W. H., and L. D. Meyer, "Soil Erodibility on Construction Areas", <u>Highway Research Special Report 135</u>, Highway Research Board, pp. 20-29, 1973.
- 3. Soil Conservation Service, "Guidelines for the Control of Erosion and Sediment in Urban Areas of the Northeast", U. S. Department of Agriculture, Upper Darby, Pa., 1970.
- 4. Wischmeier, W. H., C. B. Johnson, and B. V. Cross, "A Soil Erodibility Nomograph for Farm Land and Construction Sites", <u>Jour. Soil Water Conservation</u>, Vol. 28, No. 5, pp. 189-193, 1971.
- Swerdon, P. M. and R. R. Koontz, "Sediment Runoff Control at Highway Construction Sites", <u>Engineering Res. Bulletin B-108</u>, Pennsylvania State College of Engineering, p. 70, 1973.
- 6. Foster, G. R., and W. H. Wischmeier, "Evaluating Irregular Slopes for Soil Loss Prediction", <u>ASAE Paper No. 73-227</u>, p. 16, 1973.

APPENDIX A

METHOD OF CALCULATION

Appendix A contains a very brief mathematical discourse on the method of calculation found in the computer program. For a more detailed treatment of the method used in the computer, program the reader is referred to reference 6.

The basic assumptions of the Universal Soil Loss Equation are that the average soil loss per unit area (in this case, of roadside) is a product of a rainfall factor (termed R), a soil erodibility factor (K), a slope length factor (L) and a steepness factor (S). Thus,

$$A = RKLS$$

(1)

(4)

where A is the soil loss per unit area. For the purpose of calculation the slope length and steepness factors have been combined into a series of tables involving a length-steepness factor (LS).

As indicated by the equation, the calculation of A assumes a uniform steepness. However, Foster and Wischmeier found that in the case of irregular slopes the sediment yields are not accurately estimated by the assumption of a uniform overall average steepness. They observed that the sediment load at any location on an irregular slope must be a function of the slope's erosion characteristics, such as its local soil detachment rate and the transport capacity of the runoff. They proposed that a slope of irregular steepness be divided into a series of N segments such that the slope steepness or gradient and soil type, and thereby the soil detachment rate, within each segment could be considered to be uniform. The total soil loss from the slope is thus the sum of the losses from the N segments.

The Universal Soil Loss Equation then becomes,

$$A = RK \left\{ \frac{\sum_{j=1}^{N} (S_j \lambda_j - S_j \lambda_{j-1})}{\lambda_e (72.6)^{0.5}} \right\}$$
(2)

where the bracketed expression replaces the topographic factor LS in Equation 1. The term λ_j is the distance, in feet, from the top of the slope to the lower end of any segment, j; λ_{j-1} is the slope length above segment j; and λ_e is the overall slope length. The term S_j is the value of the factor S from segment j,

where $S = \frac{0.0430^2 + 0.300^2 + 0.43}{6.613}$ (3)

and σ is the slope gradient or steepness in percent. The bracketed expression of Equation 2 may be simplified for computation purposes to

$$LS = \frac{1}{\lambda_e} \qquad \sum_{j=1}^{N} (U_{2j} - U_{1j})$$

A-1

UL1772

The LS value determined by this procedure is a function of all the segment lengths and slope gradients or steepnesses and of their particular sequence on the slope. The percentage of the total sediment yield that comes from each of the N slope segments is also obtained by this computational procedure. The relative sediment contribution of segment j to the total soil loss is $(U_{2j} - U_{1j}) / \sum_{j=1}^{N} (U_{2j} - U_{1j})$.

APPENDIX B

DATA INPUT FORMAT

Location Card

Code the district and residency, as indicated below.

District (card 1, column 1)

<u>District</u>	Code
Bristol	1
Salem	2
Lynchburg	3
Richmond	4
Suffolk	5
Fredericksburg	6
Culpeper	7
Staunton	8

Residency (card 1, columns 4-5)

<u>District</u>	Residency	Code
Bristol	Wise	01
	Abingdon	03
	Lebanon	04
	Tazewell	06
	Wytheville	08
	Jonesville	58
Salem	Hillsville	09
	Christiansburg	11
	Martinsville	12
	Rocky Mount	13
	Salem	14
	Bedford	16

B-1

u 1775

District	Residency	Code
Lynchburg	Chatham Halifax Dillwyn Appomattox Amherst	17 18 19 20 22
Richmond	South Hill Amelia Petersburg Chesterfield Sandston Ashland	23 24 25 26 27 28
Suffolk	Franklin Waverly Suffolk Norfolk Williamsburg Accomac	31 32 33 34 35 36
Fredericksburg	Saluda Warsaw Fredericksburg Bowling Green	37 39 40 41
Culpeper	Louisa Charlottesville Culpeper Warrenton Fairfax Manassas Leesburg	42 43 45 46 47 48 49
Staunton	Lexington Staunton-Verona Harrisonburg Edinburg Luray	50 53 54 55 56

K value (card 1, columns 10-12)

• •

Note: The K value will be obtained from county soil conservation maps and/or preconstruction geological survey reports. General soils of low erodibility range in K value from .10 - .23. Medium erodibility soils range from .24 to .36 and highly erodible soils have K values in the range .37 to .49.

Number of segments (card 1, column 20)

Code the number of segments of the slope in column 20 of the first card. A maximum of 5 segments is allowed.

Segment Length and Gradient Card(s)

The next data card codes the segment length and its gradient in percent. One length and gradient is required per card. If the slope is divided into 3 segments then 3 segment length and gradient cards are required.

Code the segment length and gradient as indicated:

Column 1 through 3		Length of segment in feet. For values less than 100 feet use columns 2 and 3.
Column 9 through 13	-	Slope gradient of segment in percent with decimal point in column 11.

Note: Segment cards must be ordered from upslope to downslope.

Construction Period Card

- Column 1 and 2 Code with a value from 1 to 12 the beginning month of construction of period of interest.
- Column 7 and 8 Code with a value from 1 to 12 the ending months or period of interest.

JOB (00822HWY10),17T0878,MSGLEVEL=(1,1),CLASS=G //SOIL EXEC FORTGCLG 11 //FORT.SYSIN DD *

PROGRAM DECK PLACED HERE.

/ ¥ //GO.SYSIN DD * 7 43 •28 25 100.00 400 2.00 12 09 /* 11

DATA CARDS (MULTIPLE PROBLEMS MAY BE SOLVED BY REPEATING DATA CARD SE-QUENCE)

Figure B-1. Typical deck set up for problem solved in main text.

B~3

2

1777

The typical program deck set up for the problem solved in the main text is shown in Figure B-1. More than one problem may be worked at a time by repeating the data input set (location card, slope length and gradient card(s), etc.) before the last card of the deck. PROGRAM LISTING

0.1778

C-1

APPENDIX C (Cont.)

.

0001	REALSLUPEL(6),SEGMEL (6),SLUPEG (6),LIST(12,3),
	\$LS(6),SJ(6),GJ(6),PLS(6),SLPMN1 (6),U1(6),U2(6),RESVAL(50)
0002	REAL KVALUE, RVALUE, SUMSEL, SUMSLG, LS1, SUMQJ, ELS, SUMPLS
0003	INTEGER DIST,RESIDN ,NUMSEG,COUNT(6),MONTH1,MUNTH2
	C
	C DATA STATEMENT-LIST-CUNTAINS 36 ELEMENTS FOR LIST-A+LIST-B+LIST-C
	C DATA STATEMENT-RESVAL-CUNTAINS 58 ELEMENTS FOR RVALUES CORRESPONDING TU
	C RESIDENCY CODE
	C UATA STATEMENT CUNTAINS 36 ELEMENTS FOR LISTA,LISTB,AND LISTC C
	c
	C
0004	DATA LIST/0.01,0.02,0.03,0.06,0.10,0.20,0.35,0.55,0.75,0.85,0.92,
	\$0.97,0.01,0.04,0.07,0.12,0.17,0.25,0.35,0.55,0.78,0.87,0.92,0.97,
	\$0.01.0.02.0.03.0.06.0.10.0.20.0.40.0.65.0.82.0.91.0.95.0.96/
0005	DATA RESVAL/150.,0.0,150.,150.,0.0,150.,0.0,150.,0.0,150.,
	\$0.0,150.,163.,150.,150.,0.0,150.,175.,200.,175.,175.,0.0,163.,238.
	\$,200.,250.,213.,225.,188.,0.0,0.0,250.,250.,275.,300.,300.,250.,
	\$250.,0.0,250.,185.,250.,175.,163.,0.0,175.,175.,200.,175.,150.,
	\$150.,0.0,0.0,138.,150.,150.,0.0,150./
0006	5000 FORMAT (11,2x,12,4x,F3.0,7x,11)
0007	5001 FORMAT (F3.0,44,9F6.2)
0008	5003 FORMAT (12,4X,12)
0009	5004 FORMAT (F5.2)
0010	6000 FORMAT(41X+53HDESIGNING MAINTENANCE OF TEMPORARY SILTATION CONTROL \$5+//)
0011	6001 FORMAT (48X,8HDISTRICT,7X,11,6X,9HRESIDENCY,5X,12/)
0012	6002 FORMAT (48X.)7HK VALUE,7X.)F5.2.6X.)7HR VALUE,2X.)F5.0/)
	6003 FORMAT (56X, 15HEEGINNING MONTH, 1X, 12/)
0013	
0014	6004 FURMAT(56X,12HENDING MUNTH,4X,12//)
0015	6005 FORMAT(9X,7HSEGMENT,6X,6HLENGTH,6X,8HGRADIENT,5X,8HLENGTH-1,6X, \$2HU2,6X,2HU1,6X,5HU2-U1,6X,7HSEGMENT,6X,7HSEGMENT,2X,20HPERCENT CO \$NTRIBUTION)
0016	6006 FORMAT(34X, THPERCENT, 47X, 6HLENGTH, 7X, 2HLS, 10X, 13HOF TOTAL LOSS, //)
0017	6007 FORMAT(12X,11, 9X,F5.0,7X,F6.2, 7X,F5.0,7X,F5.0,3X,F5.0,5X,F5.0,
0017	\$7X9F5+U99X9F5+29 6X9F7+3)
0016	6008 FORMAT(1H0,76X,F5.0,7X,F5.0,9X,F5.2, 6X,F7.3///)
0019	6009 FORMAT (9X,46HESTIMATED ANNUAL SOIL-LOSS IN TONS PER ACRE +13X,
0019	\$3H = +f10.2/)
0020	6010 FURMAT (9X,44HESTIMATED ANNUAL SOIL-LOSS IN CUBIC YARDS ,15X,
	33H = +F10.2/)
0021	6011 FORMAT (9X,62HESTIMATED SUIL-LOSS IN CUBIC YARDS OVER CONSTRUCTION
	\$PERIOD = +F10-2/)
0022	6012 FORMAT (62X,11H ABATEMENT ,//)
0023	6013 FORMAT(02X,54HNO. OF STRAW BARRIER(S) NEEDED PER 100 FEET OF ROADW
0025	\$AY,F10.2)
00.14	
0024	6014 FORMAT(9X, 35HESTIMATED AREA OF INTEREST IN ACRES, 24X, 3H = ,F10.2/)
0025	6015 FORMAT (59X+17HEQUIVALENCY TABLE+/)
0026	6016 FORMAT(42X,50H1 DROP INLET(DOUBLE-RING BALED)= 10 STRAW BARRIERS,/
0007	
0027	6017 FORMAT(1H1)
0028	6018 FORMAT (29X,15HIN CUBIC METERS,25X,2H= , F10,27)
0029	6019 FORMAT (29X,11HIN HECTARES,28X,3H = ,F10,2//)
0030	6020 FORMAT(61X+13HCOVER INDEX C+//)
0031	6021 FORMAT(40X,13HTYPE OF COVER,44X,7HC VALUE,/)
0032	6022 FORMAT(40X,4HNONE,53X,7H 1.00,/)
0032	
0033	6023 FORMAT(40X,36HSEEDING AND MULCHING (FIRST 90 DAYS)+21X+7H

.

0035 0036	6025 FORMAT(1X+23HERROR IN RESIDENCY CODE) 6026 FORMAT(40X+54HTOTAL NUMBER OF BARRIERS NEEDED IN FINAL SEGMENT \$ +F8+07)
0037 0038 0039 0040 0041 0042	SI = 0. LS1=0. SUMSLG =0. SUMPLS=0. SUMSEL =0. SUMQJ=0.
0043 0044 0045 0046 0047 0048 0049	ELS = 0. DO 1 I = 1.60 SLOPEL(I) = 0. SLOPEG (I) = 0. SEGMEL (I) = 0. LS(I) = 0. SJ(I) = 0.
0050 0051 0052 0053 0054 0055 0056	QJ(I) = 0. SLPMN1 (I) = 0. PLS(I) = 0. COUNT(I) = 0. U1(I) = 0. U2(I) = 0. 1 CONTINUE
	C
0057 0058	C
	C C READ SEGMENT LENGTHS AND SLOPE GRADIENTS C FORMAT(F3.0+5X+F5.2) C VARIABLE(S)-SEGMEL(I)+SLOPEG(I) C
0059 0060 0061	READ (5,5001) SEGMEL (I),SLOPEG (I) COUNT(I) = 1 5 CONTINUE C
	C C C CALCULATE SLOPE LENGTHS C VARIABLE(S)-SLOPEL(I) C C C
0062 0063 0064 0065	SLOPEL(1) = SEGMEL (1) DO 10 I = 2,NUMSEG J = I - 1 SLOPEL(I) = SLOPEL(J) + SEGMEL (I)
0066 0067	10 CONTINUE DO 15 I = 1+NUMSEG

u 1781

APPENDIX C (Cont.)

	CC C C C C CALCULATE SLOPE LENGTH - 1
	C VARIABLE(S)-SLPMN1(I) C C CC
0068 0069 0070	SLPMN1 (I) = SLOPEL(I) - SEGMEL (I) 15 CONTINUE DU 20 I = 1,NUMSEG C
	C C C SUM THE SEGMENT LENGTHS C VARIABLE(S)-SUMSEL C C
0071 0072	CC SUMSEL = SUMSEL + SEGMEL (I) 20 CONTINUE CC
	C C READ BEGINNING AND ENDING MONTH C FORMAT(12,4X,12) C VARIABLE(S)-MONTH1.MUNTH2 C C
0073 0074 0075 0076	READ (5,5003) MONTH1,MONTH2 IF (NUMSEGGT. 1) GO TO 40 GO TO BU 40 DO 50 I = 1,NUMSEG
	CC C C C C CALCULATE SJ+U2+U1+AND QJ=U2-U1 C SUM THE QJ+S C VARIABLE(S)-SJ(I)+U2(I)+U1(I)+QJ(I)+SUMQJ C C
0077 0078 0079 0080 0081 0082	<pre>SJ(I) = (0.043*SLOPEG (1)**2. + 0.30 * SLOPEG (1)+0.43)/6.613 U2(I) = (SJ(I) * SLOPEL (I) **1.5)/(72.6)**0.5 U1(I) = (SJ(I) * SLPMN1 (I) **1.5)/(72.6)**0.5 GJ(I) = U2(I) - U1(I) SUMQJ = SUMQJ + GJ(I) 50 CONTINUE CC</pre>
	C C C CALCULATE ELS C VARIABLE(S)-ELS C C
0083 0084	CELS = SUMQJ / SUMSEL D0 60 I = 1.NUMSEG CC

1782

	C C C CALCULATE LS;PLS;SUM OF PLS;S C VARIABLE(S)-LS(I);PLS(I);SUMPLS C C C
0085 0086	LS(I) = QJ(1) / SEGMEL (I) PLS(I) = (QJ(1) / SUMQJ) * 100
0087	SUMPLS = SUMPLS + PLS(I)
0088 0088	60 CONTINUE G0 T0 110
0090	80 IF (NUMSEG .EQ. 1) GO TO 90
0041	GU TU 110 CC
	C C C CALCULATE LS FOR 1 SEGMENT C VARIABLE(S)-LS1 C C
0092 0093	CC 90 IF (SEGMEL (1) .LE. 800AND. SLOPEG (1) .LE20) GO TO 100 IF (SEGMEL (1) .GT. 800OR. SLOPEG (1) .GT20) LS1=(SEGMEL (1) \$/75.)**0.6*(SLOPEG(1)/9.)**1.4
0094 0095	GU_TU_109 100 LS1 = SEGMEL (1) ##0.5#(0.0076+0.0053#SLOPEG (1)+0.0076#SLOPEG (1) %##2.)
0096 0097 0098 0099	109 LS(1) = LS1 110 WRITE(6,6017) WRITE(6,6000) WRITE(6,6001) DIST,RESIDN
	CC C C C C DETERMINE R VALUES ACCORDING TO RESIDENCY CODE C VARIABLE(S)-RVALUE C C
0100 0101 0102	CC IF (RESIDN .LE. 0 .OR. RESIDN .GT. 58) GO TO 190 RVALUE = RESVAL(RESIDN) IF (RVALUE .LE. 0.0) GO TO 190
0102	WRITE (6,6002) KVALUE
0104	WRITE(6,6003)MONTH1
0105 0106	WRITE (6,6004) MONTH2 WRITE(6,6005)
0107	WRITE(6,6006)
0108 0109	DO 120 I = 1 + NUMSEG $WRITE(6 + 6007)$
	<pre>\$ COUNT(I),SLOPEL(I),SLOPEG (I),SLPMN1 (I),U2(I),U1(I),QJ(\$I),SEGMEL (I),LS(I),PLS(I)</pre>
0110	120 CONTINUE
0111	WRITE (6+6008)SUMQJ+SUMSEL +ELS+SUMPLS
0112	IF (NUMSEG .EQ. 1) GO TO 130

C-5

v 1783

APPENDIX C (Cont.)

CALCULATE A IN T/A (ANNUAL LOSS) C С VARIABLE(S)-A С С ****** С 0113 A = RVALUE * KVALUE * ELS GO TO 140 0114 C-----C С С CALCULATE A IN T/A (ANNUAL LOSS) FOR 1 SEGMENT С C VARIABLE(S)-A С C--0115 130 A = RVALUE * KVALUE * LS(1) C-----C C CALCULATE & IN (ANNUAL LUSS) IN CUBIC YARDS C С VARIABLE (S)-B С С-----С 0116 140 B = .87 * A WRITE (6,6009) A 0117 0118 WRITE(6,6010) B C-----C С Ĺ С ADJUST FOR SEASON BY READING DATA FROM DATA LIST USING THE ARRAY (LIST) IF DISTRICT CODE IS-STAUNTON, SALEM OR BRISTOL С THE ELEMENTS 1-12 OF ARKAY LIST ARE USED С IF DISTRICT CODE IS-CULPEPER OR LYNCHBURG С THE ELEMENTS 13-24 OF ARRAY LIST ARE USED С IF DISTRICT CODE IS-RICHMOND, FREDERICKBURG OR SUFFOLK С THE ELEMENTS 25-36 OF ARRAY LIST ARE USED С VARIABLE(S)-C С С С -----c C--IF(DIST .EQ. 1 .OR. DIST .EQ. 2 .OR. DIST .EQ. 8) M = 1 IF (DIST .EQ. 3 .UR. DIST .EQ. 7) M = 2 IF (DIST .EQ. 4 .UR. DIST .EQ. 5 .UR. DIST .EQ. 6) M = 3 0119 0120 0121 IF (MUNTH2-MUNTH1)142+143+144 0122 142 C1 = 1. - LIST (MONTHI.M) C = C1 + LIST (MONTH2.M) 0123 0124 GU TU 160 0125 0126 143 C = 1.0127 GO TO 160 144 C = LIST(MONTH2,M) - LIST(MONTH1,M) 0128 C--С С CALCULATE ESTIMATED SOIL-LOSS IN CUBIC YARDS OVER CONSTRUCTION PERIOD С VARIABLE (S) -D С С С C-----C 0129 160 D = A * C

APPENDIX	С	(Cont.)	
----------	---	---------	--

0130	WRITE(6,6011) U CC
	C C CALCULATE ESTIMATED SOIL-LOSS IN CUBIC METERS OVER CONSTRUCTION PERIOD C VARIABLE(S)-E C
0131 0132 0133 0134	CC E = D # .7646 wRITE(6.6018)E IF (NUMSEG .EG. 1) GU TO 161 NUM1 = NUMSEG - 1 CC
	C C C SUM ALL EXCEPT LAST SEGMENT LENGTHS C VARIABLE(S)-SUMSG2 C C
0135 0136	CC DC 170 1 = 1+NUM1 170 SUMSG2 = SUMG2 + SEGMEL(1) CC
	C C C CALCULATE AREA IN FT**2 C VARIABLE(S)-AREA C C
0137 0138 0139	CC AREA = SUMSG2 * SEGMEL (NUMSEG) GO TO 162 161 AREA = SEGMEL (1) * 100 CC
	C C C CALCULATE AREA OF INTEREST IN ACRES C VARIABLE(S)-AREA1 C C
0140 0141	CC 162 AREA1 = AREA * (1./43560.) WRITE(6.6014) AREA1 CC
	C C C CALCULATE AREA OF INTEREST IN HECTARES C VARIABLE(S)-F C C
0142 0143 0144	CC F = .4047 * AREA1 WRITE(6,6019)F WRITE(6,6012) CC
	C C C C CALCULATE A * AREA FOR YIELD IN YD**3 C VARIABLE(S)-AREA2

C-7

APPENDIX C (Cont.)

	C C	
0145	с	C AREA2 = D * AREA1
	с с с с с с с с	CALCULATE NO. OF STRAW BARRIER(S) NEEDED PER 100 FT. VARIABLE(S)-Y
0146 0147	C	Y = AREA2 ♀ 100. / SEGMEL(NUMSEG) wRITE (6,6013) Y
	С С С С С	CALCULATE TOTAL NUMBER OF BARRIERS NEEDED IN FINAL SEGMENT
0140	C	X = (Y * SEGMEL(NUMSEG))/100.
0149		WRITE (6+6026) X
0150		WRITE (6,6015)
0151		WRITE(6,6016)
0152 0153		WRITE(6,6020) WRITE(6,6021)
0155		WRITE (6,6022)
0155		WRITE (6,6023)
0156		WRITE (6+6024)
0157		GO TO 2
0158	190	
0159	200	
0160		END